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PhD Thesis: Genetic architecture of lignocellulosic biomass yield and quality in black   

poplar for its use in biorefinery

General objective:

• To elucidate the molecular and genetic basis of biomass yield and quality in European black 

poplar using large population size, contrasting environments and modern statistical tools.

Specific objectives:

(1) To quantify the genetic variation and the heritability of components of lignocellulosic biomass yield 

and quality. 

(2) To analyze interactions between the genetic variability of the target traits and environment. 

(3) To assess the existence of any trade-offs between biomass quantity and quality and to identify the 

genetic basis of significant trait correlations. 

(4) To identify and locate genetic polymorphisms that control the genetic variability of biomass yield and 

quality related traits. 



Populus nigra association mapping population and a field trial:

Figure 1. Geographical origin (France, Italy, Germany, Netherlands) of the subpopulations 

constituting the Populus nigra association population and location of a field trial

 Population: Association mapping population of 

European black poplar: 

~1000 populus nigra clones /genotypes

 Experimental sites: Orléans (France) within the 

NovelTree project

 Experimental design: the trial was established 

using a randomized complete block design 

(RCBD) with 6 replications.

 Traits of interest: Bioenergy related traits 

• Components of biomass yield, 

• Biomass yield, and 

• Biomass quality
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Accounting for spatial variability using breedR

1. Introduction

 Why do we care about spatial effects?

 Is RCBD efficient in capturing variability in the field test when we have large genetic entries 

of forest trees?

Aerial view of the field trial 2D map of phenotype



2. Statistical method

 Individual tree data from Orléans experimental design were analysed by a linear mixed model 

(Henderson, 1984) with or without a spatial effect using breedR

(Muñoz and Sanchez, 2014). 

 The model fit to the data followed the general linear mixed model of the form:

Where;  

Y is a vector of phenotypic values, 

β is a vector of fixed effects of blocks, 

u is a vector of random effects of genotypes, 

X and Z are design matrices relating the observations to the fixed and random effects, 

respectively.

s is a spatially dependent random error vector, and 

e is a spatially independent random residual vector. 

Classical mixed model: Y = Xβ + Zu + ε        (1)

Spatial mixed model:    Y = Xβ + Zu + s + e    (2)



Statistical method cont’d . . . 

u ~ N (0, σ2
g I) e ~ N (0, σ2

e I)s ~ N (0, σ2
sH) 

Classical model:   Y =  Xβ +  Zu +  ε        (1)

fixed random

Spatial model:   Y =   Xβ +    Zu +    s   +    e    (2)

 AR1( ρ ) represents a first-order 

autoregressive correlation matrix 

which, for ordered coordinates of size 

n, has the form:

H= [𝐀𝐑𝟏(𝛒𝐜𝐨𝐥) ⊗ 𝐀𝐑𝟏(𝛒𝐫𝐨𝐰)]



3. Trait to be analysed for illustration of the new statistical package breedR: 

“predicted dry biomass yield” from Orléans experimental design

Developing prediction model: Mathematical relationships between various morphological 

descriptors and biomass yield have been assessed. 

Morphological descriptors measured on all trees:

 Shoot length 2010, 2011

 Height 2009, 2010, 2011

 Circumference 2009, 2010, 2011

 Predicted date for bud set score

 Predicted date for bud flush score

 Sylleptic ramification score

 Tree architectural traits

Dry biomass yield measured 

on biomass subsamples: 

 30 genotypes * 3 replications



Trait to be analysed cont’d . . .

 Trait: DW.predicted.model1 

 “tree total dry biomass weight” was predicted based on biomass components measured at 

Orleans in 2011 (2nd year of the 2nd production cycle).

 model1: DW.total ~ -1 + HT2011+ Circ2011.trsf + date15.fitted.doy
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4. Spatial and genetic analysis of Populus nigra association mapping 

experiment using breedR

 A linear mixed model approach involving spatial effects was applied

 The objectives of the spatial analysis were to obtain:

 an accurate genotypic value, i.e., adjusted for any micro-environmental effect

 an adjusted individual tree phenotypic value 

 an accurate estimate of broad-sense heritability (H2)

 an accurate estimate of the genetic variation of the trait



Data exploration:

 Histogram of raw phenotype data: the normal distribution of the phenotype was evaluated

> hist(data_ok$DW.predicted.model1, col = "grey", xlab = "DW.predicted.model1", main = "")



Fixed effect ANOVA model: 

Model QC: Assumptions on distribution of residuals of the ANOVA model were checked

>op <- par(mfrow = c(2, 2))

>plot(linmod)

>par(op)



ANOVA model cont’d . . .

Boxcox transformation: was used to normalize the predicted total dry biomass yield

boxcox_transf <- boxcox(linmod)

lambda <- boxcox_transf$x[which.max(boxcox_transf$y)]

lambda = 0.3434343 



ANOVA model cont’d . . .

Boxcox transformation: Y_trsf = (Y^lambda -1)/lambda



Check if the ANOVA model is improved after data transformation:

>op <- par(mfrow = c(2, 2))

>plot(linmod_trsf)

>par(op)



Mixed model analysis without a spatial effect using breedR (classical model)

> mixmod_breedR <- remlf90(fixed = DW.predicted.model1.trsf ~ 1 + as.factor(Bloc),

+ random = ~ Ident,

+ data = data_ok,

+ method = "ai")

> summary(mixmod_breedR)

Linear Mixed Model with pedigree and spatial effects fit by AI-REMLF90 ver. 1.110

Fixed effects:

value   s.e.

as.factor(Bloc).1 23.749 0.1721

as.factor(Bloc).2 22.148 0.1734

as.factor(Bloc).3 22.508 0.1756

as.factor(Bloc).4 19.698 0.1887

as.factor(Bloc).5 22.996 0.1778

as.factor(Bloc).6 19.277 0.1841

Data: data_ok

AIC     BIC logLik

29940 unknown -14968

Variance components:

Estimated variances   S.E.

Ident 12.24 0.6990

Residual               16.21 0.3635



Classical model cont’d . . .

 Spatial effect diagnosis: 2D plot of residuals from classical model



Classical model cont’d . . .

 Spatial effect diagnosis: Variograms of residuals from classical model

> variogram(mixmod_breedR, coord = data_ok[, colnames(data_ok) %in% c("X_ok", "Y_ok")], 

R = 60)



Conclusions based on classical model:

• The analysis of 2 year biomass yield indicated that the RCB design was not adequately 
accounting for field variation.

• In order to improve the estimation of genotype effects, a spatial analysis was used on 2 year 
biomass data using the breedR (Muñoz and Sanchez, 2014) statistical package.



Mixed model with a spatial effect using breedR: autoregressive with Block 

effects (Selected spatial model)

#grid5: 

rho.grid <- expand.grid(rho_r = seq(0.83, 0.88, length = 4),

rho_c = seq(0.95, 0.99, length = 4))

mixmod_breedR_AR1_bloc_grid5 <- remlf90(fixed = DW.predicted.model1.trsf ~ 1 + as.factor(Bloc),

random = ~ Ident,

spatial = list(model = "AR",

coordinates = data_ok[, c("X_ok", "Y_ok")],

rho = rho.grid),

data = data_ok,

method = "ai")

save(mixmod_breedR_AR1_bloc_grid5, file =

"mixmod_breedR_AR1_bloc_grid5_DW.predicted_model1_trsf.Rdata")



Selected spatial model cont’d . . . 

> qplot(rho_r, rho_c, fill = loglik, geom = "tile", data = mixmod_breedR_AR1_bloc_grid5$rho)

Autoregressive parameters for rows and columns: (0.846, 0.976)



Selected spatial model cont’d . . . 

> selmod <- remlf90(fixed = DW.predicted.model1.trsf ~ 1 + as.factor(Bloc),

+ random = ~ Ident,

+ spatial = list(model = "AR",

+ coordinates = data_ok[, c("X_ok", "Y_ok")],

+ rho = c(rho_r= 0.846, rho_c = 0.976)),

+ data = data_ok,

+ method = "ai")

> summary(selmod)
Fixed effects:

value   s.e.

as.factor(Bloc).1 22.497 0.9883

as.factor(Bloc).2 22.236 0.9777

as.factor(Bloc).3 20.612 0.9237

as.factor(Bloc).4 20.459 0.9396

as.factor(Bloc).5 20.273 0.9890

as.factor(Bloc).6 19.490 1.0039

Variance components:

Estimated variances   S.E.

Ident 12.836 0.6921

spatial                6.125 0.7843

Residual              11.908 0.2912



Selected spatial model cont’d . . . 

Selected spatial model: 2D map of spatial effects 

Aerial view of the field trial



Selected spatial model cont’d . . . 

2D map of residuals:

Classical model Selected spatial model 



Selected spatial model cont’d . . . 

Variograms of residuals:

Classical model Selected spatial model 



Selected spatial model cont’d . . . 

Selected spatial model: 2D map of genotype BLUPs



Selected spatial model cont’d . . . 

Selected spatial model: Boxplot of genotype BLUPs per Block



Selected spatial model cont’d . . . 

Selected spatial model: histograms of random effect BLUPs  



Extraction of AI matrix, estimation of H2 together with its standard errors

#Extraction of AI matrix from breedR output:

aimat <- which(selmod$reml$output == " inverse of AI matrix (Sampling Variance)")

varcov_mat_breedR <- matrix(na.omit(as.numeric(unlist(apply(data.frame(selmod$reml$output[

(aimat + 1):(aimat + 3)]), 1, function(x){strsplit(x, " ")})))), 3, 3)

colnames(varcov_mat_breedR) <- c("Ident", "spatial", "Residual")

rownames(varcov_mat_breedR) <- c("Ident", "spatial", "Residual")

#Estimation of heritability (H2) together with its standard errors:

library(msm)

H2 <- selmod$var["Ident", "Estimated variances"] /

(selmod$var["Ident", "Estimated variances"] + selmod$var["Residual", "Estimated variances"])

se_H2 <- deltamethod(~ x1 / (x1 + x2),

+ c(selmod$var["Ident", "Estimated variances"],

+ selmod$var["Residual", "Estimated variances"]),

+ varcov_mat_breedR[c("Ident", "Residual"), c("Ident", "Residual")])

round(c(H2, 1.96*se_H2), 2)



Extraction of AI matrix, estimation of H2 together with its standard errors

 an accurate estimate of broad-sense heritability (H2)

Classical model:  H2 = σ2
g /(σ

2
g +  σ2

ε)

Selected spatial model:

H2 = σ2
g /(σ

2
g + σ2

s + σ2
e)

H2 = σ2
g /(σ

2
g +  σ2

e)

X



Extraction of AI matrix, estimation of H2 together with its standard errors

Graphical representation of AICs and broad-sense heritability estimates from classical & 
selected models: 

29940 29155 0.43 ± 0.03 0.52 ± 0.03



Conclusions:

 The analysis of biomass yield indicated that the RCB design was not adequately accounting 

for field variation resulting in high error term and low heritability.

 Linear mixed model with AR1 yielded best results for all traits.

 Including a fixed effect of Block in the spatial model improves the model fit.

 Spatial analysis always improves H2 estimates.

 Data transformation do not seem to signifcantly affect H2 estimates nor spatial effect 

parameters.
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