
Exploiter breedR pour l’évaluation
génétique d’un dispositif forestier
expérimental

Facundo Muñoz
facundo.munoz@cirad.fr

  famuvie

Orléans, Sep. 18, 2018 http://famuvie.github.io/breedR/
2 / 9

Démarche de la formation
Fichier excercises.R qui sert de guide structurante :

consignes

code templates

Diapositives pour apporter éléments de motivation et discussion

Manuels breedR pour creuser

3 / 9

Objectifs opérationnels

4 / 9

1. Analyser un test de descendance simple (1 caractère, 1 site)

2. Tenir compte des effets environnementaux

3. Ajuster autres modèles génétiques courants

4. Analyser plusieurs caractères simultanément

5. Estimer l’interaction GxE dans des dispositifs multi-site

6. Se servir d'un serveur de calcul pour paralléliser les analyses

5 / 9

1. Analyser un test de descendance simple
(1 caractère, 1 site)

1. Estimer des effets fixes et aléatoires

2. Extraire et représenter graphiquement les estimateurs

3. Estimer des effets additifs individuelles ou de groupe

1. Calculer l'héritabilité du dispositif (après-midi)

6 / 9

2. Tenir compte des e�ets
environnementaux

1. Vérifier l'indépendance spatiale des résidus

2. Contrôler la variabilité environnementale à l'aide de modèles spatiaux

7 / 9

3. Ajuster autres modèles génétiques
courants

(explicatif)

1. Estimer des effets génétiques de compétition

2. Estimer des effets additifs individuelles à partir d'une matrice
d'apparentement génomique (GBLUP)

3. Estimer des effets génétiques individuelles de dominance

8 / 9

4. Analyser plusieurs caractères
simultanément

(explicatif)

5. Estimer l’interaction GxE dans des
dispositifs multi-site
6. Se servir d'un serveur de calcul pour
paralléliser les analyses

(explicatif, démonstratif)

9 / 9

Statistical analysis of a ‘simple’ progeny
test

Facundo Muñoz
facundo.munoz@cirad.fr

  famuvie

Orléans, Sep. 18, 2018

2 / 27

Excercise 1
Fit a progeny model to the globulus dataset with
breedR

Use variables phe_X as response and mum as grouping variable from the
globulus dataset (included with breedR)

Template
fm0 <- remlf90(
 fixed = y ~ 1, # response + fixed effects
 random = ~ g, # random effects
 data = D) # dataset

3 / 27

Progeny Tests

4 / 27

Elements of a dataset

response variable

trait of interest, only 1 ('simple' remember?)

ancestor

or genotype, genetic group, family, provenance, or any grouping
variable.

y

g

5 / 27

Globulus dataset

knitr::kable(head(globulus), format = "html")

self dad mum gen gg bl phe_X x y

69 0 64 1 14 13 15.756 0 0

70 0 41 1 4 13 11.141 3 0

71 0 56 1 14 13 19.258 6 0

72 0 55 1 14 13 4.775 9 0

73 0 22 1 8 13 19.099 12 0

74 0 50 1 14 13 19.258 15 0

6 / 27

Statistical model

We assume that the observed value for an individual from group is

with and

g

yg ∼ μ0 + μg + ε

μg ∼ N (0, σ2
g) ε ∼ N (0, σ2)

7 / 27

Excercise 2
Include further e�ects
1. Extend fm0 by including a fixed effect of the provenance (variable gg)

and a random block effect (variable bl).

2. Specify sensible initial variances for the random components

3. Extend fm1 by including an interaction between cross-classified
variables

8 / 27

Random or �xed?
Can I change variables from fixed to random and viceversa?

How that would change the results and their interpretation?

9 / 27

Initial variances
Good practice: specify initial values for all the variances in the model

breedR provides sensible default values, but sometimes you can help

fm1 <- remlf90(
 ···,
 var.ini = list(···, resid = ···)
)

10 / 27

Interactions
What is an interaction effect?

When can we estimate interactions?

11 / 27

Nested factors

gg mum

A 1

A 2

B 3

B 4

Cross-classified factors

gg mum

A 1

A 2

B 1

B 2

Nested or crossed variables
A property of the data, not the model

In globulus, the family (mum) is nested within the provenance (gg)

This is a matter of (good) codification:

12 / 27

Specifying interactions in breedR
Create a new variable!!

See ?base::interaction

If F1 and F2 are factors

F12 <- factor(F1:F2)

is another factor with all the observed level combinations

Use this variable as another term in the model

13 / 27

Excercise 3.
Extract results
1. Use functions summary(), fixef() and ranef() to extract estimates

2. Variance estimates are stored in fm2$var

3. Plot observed phenotype and residual()s vs fitted() values to assess
the model predictive ability and to diagnose residuals

14 / 27

Excersise 4.
Pedigrees
1. Replace the genetic variable mum at family level, by an animal model with a

genetic effect at individual level.

2. Retrieve the predicted individual breeding values. Make sure they are in
the same order as observed in the globulus dataset.

15 / 27

The animal model

with and

where is the relationship matrix, derived from the pedigree

y ∼ μ0 + a + ε

a ∼ N (0, σ2
aA) ε ∼ N (0, σ2)

A

16 / 27

Additive Genetic E�ect
Random effect at individual level

Based on a pedigree

BLUP of Breeding Values from own and relatives' phenotypes

Represents the additive component of the genetic value

More general:

family effect is a particular case
accounts for more than one generation
mixed relationships

More flexible: allows to select individuals within families

17 / 27

Speci�cation in breedR
fm3 <- remlf90(
 fixed = ···,
 random = ···,
 genetic = list(
 model = 'add_animal', # model name for the term
 pedigree = ···, # pedigree (see Details in ?remlf90)
 id = ···), # variable name of the individual
 data = globulus
)

18 / 27

Specifying a pedigree
A 3-column data.frame or matrix with the codes for each individual
and its parents

A family effect is easily translated into a pedigree:

use the family code as the identification of a fictitious mother

use 0 or NA as codes for the unknown fathers

self dad mum

69 0 64

70 0 41

71 0 56

72 0 55

73 0 22

74 0 50

19 / 27

Retrieving BVs from the �tted model
Be careful about the ordering

ranef(·)$genetic typically does not match the order of observed
individuals (founders, clones, recoding)

 = model.matrix(·)$genetic %*% ranef(·)$genetic always give
the PBV for all observed individuals in the dataset, in that order.
Z a

20 / 27

Observed data:

self dad mum

4 1 2

3 1 2

Implied pedigree:

self dad mum

1 NA NA

2 NA NA

3 1 2

4 1 2

Sorting BVs

[
0 0 0 1

0 0 1 0
]


model.matrix(⋅)$genetic

⋅

⎡
⎢ ⎢ ⎢
⎣

a1

a2

a3

a4

⎤
⎥ ⎥ ⎥
⎦


ranef(⋅)$genetic

= [
a4

a3
]

21 / 27

Excercise 5.
Heritability

Compute the heritability of the globulus dataset using the three available
methods.

22 / 27

Methods for computing heritability
Method Limitations

1. Automatic
genetic term
method ai
fixed formula

2. Explicit Formula method ai

3. Bootstrap -

See: RShowDoc("Heritability", package = "breedR").

23 / 27

Formula syntax
For a single trait model such as:

fm <- remlf90(
 fixed = y ~ x1 + x2,
 random = u + v,
 genetic = ···,
 progsf90.options = paste('se_covar_function h2', h2fml),
 data = globulus

count the model terms in order as:

term: x1 x2 u v genetic

i: 1 2 3 4 5

And build a formula string without spaces as in:

h2fml <- 'G_5_5_1_1/(G_5_5_1_1+G_4_4_1_1+R_1_1)'

24 / 27

Bootstrap procedure
1. Fit the model to your data.

2. Write a function to simulate observations from the fitted model. You can
use breedR.sample.phenotype() if the model is simple enough

 resample_data <- function(fit) {
 ## Use the estimated values in fit to produce a new data.frame
 ## of the same size and with the same variables as globulus.
 return(dat)
 }

3: write a function to fit a simulated dataset and extract the target values

 sim_target() <- function(dat) {
 ## Fit the same model as fm3 to this fake dataset dat
 ## Return the point estimates of all variances and heritability
 return(estimates)
 }

25 / 27

Resample parameters of interest
4: Replicate the data-generation+estimation process many times

Warning: this can take a while, depending on the model and the dataset.

boot_estimates <- function(N, fit) {
 ans <- replicate(N, sim_target(dat = resample_globulus(fit)))
 return(as.data.frame(t(ans)))
}

empirical_dist <- boot_estimates(N = 100, fit = fm3)

26 / 27

This should account for most analyses of 'simple'
progeny tests

27 / 27

Environmental e�ects
Facundo Muñoz

facundo.munoz@cirad.fr
  famuvie

Orléans, Sep. 18, 2018

2 / 25

Excercises 1 and 2

Fit an animal model without the blocks e�ect
- for use as a reference

Asess the spatial independence of residuals by
- plotting their spatial distribution

- interpreting the variogram of residuals

3 / 25

Motivation
Environmental sources of variation

Bias genetic estimates

The residuals of any LMM must be noise

Recommended to routinely include spatial effects (Gilmour, Cullis, and
Verbyla 1997; Dutkowski et al. 2002)

4 / 25

Spatial autocorrelation
observations that are close to each other tend to be
more similar that observations that are far away (in
the positive case)

5 / 25

Empirical (isotropic) semivariogram
γ(h) = V [Z(u) − Z(v)], dist(u, v) = h

1

2

6 / 25

Examining residual autocorrelation in
breedR
res <- remlf90(···)

plot(res, type = "residuals")

variogram(res)

7 / 25

Excercise 3

Extend fm4 with each of the three possible spatial
models in breedR

8 / 25

Spatial models in breedR

9 / 25

Blocks model

 is the vector of random effects for the blocks

 is an indicator matrix such that if the observation belongs to
block

 is the spatial variance parameter

The block effect, is a very particular case of spatial effect:

It is designed from the begining, possibly using prior knowledge
Can account for non-spatial effects (e.g. operator)
Introduces independent effects between blocks
Most neighbours are within the same block (i.e. share the same effect)

Zu, u ∼ N (0, σ2
s I)

u

Z Z[i, j] = 1 i

j

σ2
s

10 / 25

Blocks in breedR
fm_bl <- remlf90(
 ···
 spatial = list(
 model = 'blocks', # spatial model name
 coord = ···, # matrix or data.frame with coordinates
 id = 'bl'), # name of the variable
 ···
)

It is equivalent to a random effect bl (with coordinates)

11 / 25

Splines
A cubic B-spline :

Piecewise curve defined in the intervals determined by 5 knots

Each piece is a polynomial of 3rd degree

B(x)

12 / 25

Splines
A cubic B-spline with regularly spaced knots:

The curve is constrained for continuity at each knot

Only 1 degree of freedom controls the scale

B(x)

C 2

13 / 25

Splines
A number of overlapping curves form a base of B-splines {Bj(x)}

14 / 25

Splines
Each, can be scaled using a coefficient {ujBj(x)}

15 / 25

Splines
And summed to a linear combination f(x) = ∑j ujBj(x)

16 / 25

Bidimensional Splines in a Mixed Model
 provides a spline representation of a wide family of

curves, in terms of a vector of coefficients

For any set of points , the vector of values can be written as a
matrix operation

breedR extends this to two dimensions and defines a random effect

 is the vector of spline effects

 is the matrix of spline bases evaluated at the observations

 is the spatial variance parameter

 imposes a fixed positive correlation between coefficients of
neighbouring spline bases

f(x) = ∑j ujBj(x)

u

x = {xi} f(xi)

f = [Bj(xi)]u

Bu, u ∼ N (0, σ2
s Rs)

u

B

σ2
s

Rs

17 / 25

Splines in breedR
fm_sp <- remlf90(
 ···
 spatial = list(
 model = 'splines', # spatial model name
 coord = ···, # matrix or data.frame with coordinates
 n.knots = c(nk1, nk2) # N of internal knots in each dim
 ···
)

18 / 25

Number of knots of a splines model
The smoothness of the spatial surface can be controlled modifying the
number of base functions

This is directly determined by the number of knots (nok) in each
dimension

If not explicitly set, it is determined heuristically by breedR as a function
of the number of observations

19 / 25

First-Order Autoregressive Process
An AR1(ρ) on the line is a collection of random variables where

A few random simulations with :

{xi}

xt = ρxt−1 + εt, εt ∼ N (0, 1), |ρ| < 1

ρ = 0.5

20 / 25

Bidimensional First-Order Autoregressive
Process
breedR extends this model to the plane using and defines a component

 is the vector of random effects for each individual location on a
regular grid

 is an indicator matrix such that if the observation is at site

 is the spatial variance parameter

 defines a separable correlation structure based on the kronecker
product of two AR1 processes

Zu, u ∼ N (0, σ2
s RAR)

u

Z Z[i, j] = 1 i j

σ2
s

RAR

21 / 25

AR in breedR
fm_ar <- remlf90(
 ···
 spatial = list(
 model = 'AR', # spatial model name
 coord = ···, # matrix or data.frame with coordinates
 rho = c(r1, r2) # autocorrelation coef in each dim
 ···
)

22 / 25

Autoregressive parameters of a AR model
The smoothness of the AR effects can be controlled by the autoregressive
parameters in each dimension

They can be given explicitly

Otherwise, breedR fits a model for each combination of parameters in a
default grid and returns the most likely values

(ρx, ρy)

23 / 25

Excercise 4
Plot and compare the predicted spatial e�ect from
each model

You can simply use the plot() function with type = "spatial" (also
fullspatial, check the difference).

In order to compare the three plots under the same scale, use
compare.plots(list(p1, p2, p3)). See ?compare.plots.

24 / 25

Environmental e�ects

25 / 25

Further common genetic models
Facundo Muñoz

facundo.munoz@cirad.fr
  famuvie

Orléans, Sep. 18, 2018

Competition
a.k.a. Indirect Genetic E�ects

2 / 16

Diagnosis of Competition
1. Plot of residuals vs average neighbouring residuals

Negative correlation, after accounting for Direct Genetic Effects and
Spatial Autocorrelation

2. Variogram assessment

Peak at the first lag in the variogram of residuals, after accounting for
direct genetic effects and spatial autocorrelation

3. Model comparison

Compare (e.g. AIC) competition vs. animal models

3 / 16

Each individual have two
(unknown) Breeding Values
(BV):

direct BV affects its own
phenotype,
competition BV affects its
neghbours'

The total effect of the
neighbouring competition BVs
is given by their distance-
weighted sum

Competition model

4 / 16

Weighted neighbour competition e�ect

Where be the set of neighbouring locations of tree , the vector
of competition BVs and , such that

This condition is variance-estabilizer ensuring :

ωi(α) = ∑
k∈∂i

zik(α)uc,k

∂i i uc = (uc,k)′

zik(α) ∝ 1/dα
ik

∑
k∈∂i

zik(α)2 = 1.

∀i

Var(ωi) = Var(uc) = σ2
c

5 / 16

The weights are scale-
invariant

e.g. a tree twice as far is
weighted as much

higher values of concentrate
the weights on the closest trees

The decay parameter
The decay parameter controls the relative intensity of competition of the
neighbours

α

zik

1/2α

α

6 / 16

Random-e�ect representation

Each set of BVs is modelled as a zero-mean random effect with structure
matrix given by the pedigree and independent variances and

Both random effects are modelled jointly with covariance

 is an indicator matrix linking observations and individuals

 weights the competition effect of the neighbours with (fixed) decay
parameter

Zdud + Zc(α)uc, (
ud

uc

) ∼ N (0, Σa ⊗ A), Σa = (
σ2

d σdc

σdc σ2
c

)

σ2
d σ2

c

σdc

Zd

Zc(α)

α

7 / 16

Permanent Environmental Competition
E�ect

Optional companion effect with environmental (rather than genetic)
basis

Modelled as an individual independent random effect that affects
neighbouring trees in the same (weighted) way

Zpup, Zp = Zc, u ∼ N (0, σ2
pI)

8 / 16

Implementation in breedR
fm <- remlf90(
 fixed = ···,
 random = ···,
 genetic = list(
 model = 'competition',
 pedigree = ···,
 coord = ···,
 id = ···,
 pec = TRUE/FALSE),
 data = ···,
 method = 'em'
)

9 / 16

Selection under competition

10 / 16

GBLUP & Dominance e�ects

11 / 16

Using genomic markers

Use markers to compute a relationship matrix for individuals

Several methods available
e.g. VanRaden et al. 2009

Replace the additive-genetic model, which uses the pedigree-based
relationship matrix with a generic model with a genomic relationship
matrix

 is an indicator matrix linking observations with individuals

Predicts genetic value of individuals, not markers

Improved accuracy wrt pedigree-based evaluation

Zu, u ∼ N (0, σ2
G

G)

G

G = XX ′/∑ 2p(1 − p)

A

G

Z

12 / 16

Relationship matrices
pedigree-based vs. genomic

Note the increased level of detail in the relationship structure

13 / 16

Implementation in breedR
breedR allows random effects with arbitrary covariance structures
(generic terms, see ?remlf90)

These additional components allow to introduce random effects with
arbitrary incidence and covariance/precision matrices and

fm <- remlf90(
 ···,
 generic = list(
 G = list(Zg, Gmat),
 ···
 D = list(Zd, precision = Dmat)),
 data = ···
)

Z Σ

14 / 16

Applications
include additional not-prede�ned components

e.g. Dominance, Hybrid populations, Genomic evaluation, etc.

15 / 16

Further common genetic models
Competition

GBLUP

Dominance

16 / 16

Multi-trait models
Facundo Muñoz

facundo.munoz@cirad.fr
  famuvie

Orléans, Sep. 18, 2018

Multivariate Linear Mixed Models
2-trait case

 and either diagonal or fully-parameterized matrices

Some of the fixed or random effects can affect only a subset of the traits

e.g. fixed effect of operator

Y1 = Xβ1 + Zu1 + ε1

Y2 = Xβ2 + Zu2 + ε2,

(u1, u2)′ ∼ N(0, Σu ⊗ G)

(ε1, ε2)′ ∼ N(0, Σ ⊗ In).

Σu Σ 2 × 2

2 / 7

Limitation
of breedR's implementation

All fixed and random effects are assumed to be trait-specific

transversal effects not directly supported (ultimately by PROGSF90)

Simpler covariance structures not supported

e.g. independent effects with shared variance, exchangeable structure

A workaround is to reshape the dataset to long-layout

3 / 7

Multi-trait with reshaping
wide to long-layout

Reshaping operation:

Stack traits into a single variable value
Additional variable trait
Duplicate individual information and other variables

Use single-trait models with MET syntax

trait instead of site

This overcomes the limitations breedR's multi-trait implementation

more complex models like multi-trait and multi-site become
cumbersome

4 / 7

Implementation in breedR
Specify the different traits in the main formula using cbind().

Filter site and select relevant variables
dat <-
 droplevels(
 douglas[douglas$site == "s3",
 names(douglas)[!grepl("H0[^4]|AN|BR|site",
 names(douglas))]]
)

res <-
 remlf90(
 fixed = cbind(H04, C13) ~ orig,
 genetic = list(
 model = 'add_animal',
 pedigree = dat[, 1:3],
 id = 'self'),
 data = dat
)

5 / 7

A full covariance matrix across traits is estimated for each random effect, and
all results, including heritabilities, are expressed effect-wise:

Formula: cbind(H04, C13) ~ 0 + orig + pedigree
Data: dat
AIC BIC logLik
30968 31010 -15476

Parameters of special components:

Variance components:
Estimated variances S.E.
genetic.direct.H04 918.1 438.6
genetic.direct.H04_genetic.direct.C13 1872.4 824.0
genetic.direct.C13 5827.6 1829.6
Residual.H04 8373.7 461.7
Residual.H04_Residual.C13 10922.0 755.3
Residual.C13 18439.0 1484.2

Estimate S.E.
Heritability:H04 0.0990 0.04589
Heritability:C13 0.2391 0.07036

Fixed effects:
value s.e.
orig.H04.pA 352.00 6.2389 6 / 7

Multi-trait models
Basic multivariate syntax

Long-shape with trait variable

7 / 7

Genotype-Environment interaction
in multi-site trials

Facundo Muñoz
facundo.munoz@cirad.fr

  famuvie

Orléans, Sep. 18, 2018

Excercise 1

Fit a reference model for the variable C13 of the
douglas dataset (included with breedR
with �xed e�ects of provenance (orig) and site
(site) and a random family (mum) e�ect

2 / 17

Douglas dataset

Genetic material (provenances and families) planted in 3 sites

Circumference in 2013 (C13) measured in the 3 sites

3 / 17

Excercise 2
Fit a simple interaction model with constant variance
accross sites.

4 / 17

Multiple environments
Environments may refer to sites, but also to years or climates

Here we will develop the multi-site case.

The other cases might require different approaches (e.g. continuous
variation, shared spatial effects, etc.)

5 / 17

Basic interaction
which are the genotype and environment variables in
the globulus dataset?

Remember from module 1 how to crate interactions

Is this interaction a fixed or random effect?

what did I mean by constant variance across sites?

6 / 17

Basic interaction model
C13 ∼ orig + site + mum + fe + ε

mum ∼ N (0,σ2
f
)

fe ∼ N (0,σ2
f:e

)

ε ∼ N (0,σ2)

7 / 17

Excercise 3
Extend the previous model to account for site-
varying interaction variances.

8 / 17

Heterogeneous-variance interaction model
C13 ∼ orig + site + mum +

3

∑
e=1

fe1e + ε

mum ∼ N (0,σ2
f
)

f1 ∼ N (0,σ2
f:1

)

f2 ∼ N (0,σ2
f:2

)

f3 ∼ N (0,σ2
f:3

)

ε ∼ N (0,σ2)

9 / 17

Data preparation
The previous model requires creating 3 new variables to represent the
interactions with each site

site family f1 f2 f3

s1 1 1

s1 2 2

s2 1 1

s2 2 2

s3 1 1

s3 2 2

When added, only one of them will affect the likelihood of each
observation, depending on its site

breedR will automatically fit three independent variances

10 / 17

Excercise 4
Examine and compare the site-speci�c breeding
values from each of the three models above

11 / 17

Extracting Breeding Values
Remember from Module 1 how to extract PBVs safely (model.matrix()
%*% ranef())

Here, the PBVs are the sum of the main effects and the interactions

12 / 17

Genetic correlations
Ideally, we would like to fit the following model:

but unfortunately, breedR does not support it.

Instead, we can always check the empirical correlations of the PBVs
from the previous model.

We can also compute the Type-B genetic correlation (as a function of
variances)

C13 ∼ orig + site + mum +
3

∑
e=1

fe1e + ε

mum ∼ N (0,σ2
f
)

(f1, f2, f3)′ ∼ N (0, ΣG×E ⊗ I)

ε ∼ N (0,σ2)

13 / 17

Ecovalence
Similarly, we can derive the Ecovalence and other measures of interactivity
from the PBVs

14 / 17

Site-speci�c spatial e�ects
We can leverage the generic model to fit three independent spatial effects

Use breedR internal functions to compute splines models on each si
sp1 <- breedR:::breedr_splines(douglas[douglas$site == 's1', c('x', '
sp2 <- ...; sp3 <- ...

Manually build the full incidence matrices with 0
and the values computed before
mm1 <- model.matrix(sp1)
inc.sp1 <- Matrix::Matrix(0, nrow = nrow(douglas), ncol = ncol(mm1))
inc.sp1[douglas$site == 's1',] <- mm1
inc.sp2 <- ...; inc.sp2 <- ...

reml.spl <- remlf90(
 ...
 generic = list(sp1 = list(inc.sp1, breedR:::get_structure(sp1)),
 sp2 = ...
 sp3 = ...),
 ···,
 method = 'em'
)

15 / 17

Site-speci�c spatial e�ects

16 / 17

Genotype-Environment interaction
In multi-site trials

17 / 17

Remote parallel computation
Facundo Muñoz

facundo.munoz@cirad.fr
  famuvie

Orléans, Sep. 18, 2018

2 / 8

Remote computation
You have access to a Linux server through SSH

You can perform breedR's computations remotely

Take advantage of more memory or faster processors

Parallelize jobs

Free local resources while fitting models

See ?remote for details

3 / 8

Con�guring a server
1. Windows users: install cygwin with ssh beforehand (http://cygwin.org/)

2. configure the client and server machines so that password-less SSH
authentication works

3. Set breedR options remote.host, remote.user, remote.port and
remote.bin (see ?breedR.setOption)

Optionally, set these options permanently in $HOME/.breedRrc

writeLines(
 c("remote.host = '147.99.222.196'",
 "remote.user = 'yourusername'",
 "remote.bin = '/usr/local/lib/R/site-library/breedR/bin/'"),
 con = file.path(Sys.getenv('HOME'), '.breedRrc'))

4 / 8

Fitting models remotely

res <- remlf90(..., breedR.bin = "remote")

Fit model remotely

R-console stays in stand-by until job is finished

When job finishes (provided that connection keeps alive), results are
automatically retrieved

Identical in use to local computing, but without the
processor/memory burden

5 / 8

Submitting jobs

res <- remlf90(..., breedR.bin = "submit")

Fit model remotely

Connection is closed in the meanwhile

R-console is active

Typing res queries the server for the job status
(Running/Finished/Aborted)

Retrieve results with breedR.qget(job_id)

6 / 8

Parallel computing
After you submit a job, you are free to submit more (specially with
multiple-processor servers)

Query the status of all jobs with breedR.qstat()

Kill some job with breedR.qdel(res) or all jobs with breedR.qnuke()

7 / 8

Remote parallel computation

8 / 8

